
18.152 Practice problems for the midterm exam

The midterm exam will take place on March 16th Monday 9:35-10:50.

As an open book exam, during the exam you can see
1. the textbook : Partial Differential Equations in Action by Sandro Salsa,
2. notes, copies, and scratch papers.

However, the following are NOT allowed to use
1. electronic devices including Smartpads
2. the other books except the textbook.

Problem 1. Determine whether the following statements are true or false.
You do not need to verify your answer.

(A) Given a bounded open set Ω ⊂ Rn with smooth boundary and a smooth
function g : Ω → R, a smooth harmonic function u : Ω → R satisfying
∂νu = g on ∂Ω is unique, where ν is the outward pointing normal direction
to ∂Ω.

Proof. False. Suppose that u(x) is a harmonic function with ∂νu = g on
∂Ω. Then, for any constant c, we have ∆(u + c) = ∆u = 0 in Ω and
∂ν(u+ c) = ∂νu = g on ∂Ω. Thus, there are infinitely many solutions. �

(B) Given a smooth function g : Rn → R, a smooth solution u : Rn×[0, T ]→
R to the heat equation ∂tu = ∆u satisfying u(x, 0) = g(x) is unique.

Proof. False. Recall the Tychonov’s counterexample we discussed in class.
�

(C) Given a bounded open set Ω ⊂ Rn with smooth boundary, a smooth
superharmonic function u : Ω→ R (i.e. ∆u ≤ 0) satisfies

max
Ω

u ≤ max
∂Ω

u.

Proof. False. The inequality above holds for subharmonic. For example,
if Ω = (0, π) and u(x) = sinx, then (sinx)′′ = − sinx ≤ 0 in Ω = (0, π),
namely superharmonic. However,

1 = max
[0,π]

sinx > 0 = max{sin 0, sinπ} = max
∂(0,π)

sinx.
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(D) Given a bounded open set Ω ⊂ Rn with smooth boundary and a smooth
negative function c : Ω → R, a smooth solution u : Ω → R to the equation
∆u(x) + c(x)u(x) = 0 satisfies

max
Ω

u ≤ max
∂Ω

max{u, 0}.

Proof. True. See lecture notes Feb26. �

Problem 2. u : [0, L]×[0, T ]→ R is a smooth solution to the heat equation.
(A) Assume −ux(0, t) = ux(L, t) = 0, and show

d

dt

∫ L

0
u(x, t)dx = 0.

Proof.

d

dt

∫ L

0
udx =

∫ L

0
utdx =

∫ L

0
uxxdx = ux

∣∣L
0

= ux(L, t)− ux(0, t) = 0.

�

(B) Assume −ux(0, t) = ux(L, t) ≤ 0, and show

d

dt

∫ L

0
u(x, t)dx ≤ 0.

Proof.

d

dt

∫ L

0
udx =

∫ L

0
utdx =

∫ L

0
uxxdx = ux

∣∣L
0

= ux(L, t)− ux(0, t) ≤ 0.

�

(C) Assume u(0, t) = u(L, t) = 0 and u(x, 0) ≥ 0, and then show

d

dt

∫ L

0
u(x, t)dx ≤ 0.

Proof. The maximum principle implies

min
QT

u ≥ min
∂pQT

u = 0.

Thus,

ux(0, t) = lim
δ→0

u(δ, t)− u(0, t)

δ
≥ lim

δ→0

0

δ
= 0.

In the same manner, ux(L, t) ≤ 0. Therefore, the result in (B) yields the
desired result. �



3

Problem 3. Given a bounded open set Ω ⊂ Rn with smooth boundary and
a smooth function f : Ω→ R, a smooth function u : Ω→ R satisfies ∆u = f
in Ω and u = 0 on ∂Ω.

(A) Show that the following inequality holds for any ε > 0∫
Ω
|∇u|2dx ≤ 1

ε

∫
Ω
f2dx+

ε

4

∫
Ω
u2dx.

Proof. By the divergence theorem, we have∫
Ω
u∆u+

∫
Ω
|∇u|2 =

∫
∂Ω
u∇u · ν = 0.

On the other hand, AM-GM inequality yields

|u∆u| ≤ ∆u2

ε
+ ε

u2

4
=
f2

ε
+ ε

u2

4
.

Integrating this inequality over Ω and combining it with the result of the
divergence theorem gives∫

Ω
|∇u|2 = −

∫
Ω
u∆u ≤ 1

ε

∫
Ω
f2 + ε

∫
Ω

u2

4
.

�

(B) Suppose that we have the following Poincaré inequality∫
Ω
|u|2dx ≤ C

∫
Ω
|∇u|2dx,

where the constant C only depends on n,Ω. Show that∫
Ω
|∇u|2dx ≤ C

∫
Ω
f2dx,

holds for some constant C only depending on n,Ω.

Proof. Suppose the Poincaré inequality that
∫

Ω u
2 ≤ C

∫
Ω |∇u|

2. Putting
this into the right side of the inequality from part (1) gives∫

Ω
|∇u|2 ≤ 1

ε

∫
Ω
f2 +

ε

4

∫
Ω
u2

≤ 1

ε

∫
Ω
f2 +

ε

4
C

∫
Ω
|∇u|2

for all ε > 0. Now if we choose say ε = 2/C and rearrange, we get∫
Ω
|∇u|2 ≤ C

∫
Ω
f2.

�
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Problem 4. Let g : [0, π2 ]→ R be a smooth function satisfying

g(θ) =

∞∑
n=1

An sin(2nθ), g(3)(θ) =

∞∑
n=1

−(2n)3An cos(2nθ),

for some constants {An}n∈N. We define u(r cos θ, r sin θ) by

u(r cos θ, r sin θ) = lim
N→∞

SN (r cos θ, r sin θ).

where

ϕn(r cos θ, r sin θ) =
An
r2n

sin(2nθ), SN (r cos θ, r sin θ) =
N∑
n=1

ϕn.

(A) Show that for each fixed (r, θ) ∈ [1,+∞)× [0, π2 ] = Ω, SN (r cos θ, r sin θ)
has the limit u(r cos θ, r sin θ). In particular, u(r, 0) = u(0, r) = 0 and
u(cos θ, sin θ) = g(θ) on ∂Ω.

Proof. We begin by calculating∫ π
2

0
|g(3)(θ)|2dθ =

∞∑
n=1

∫ π
2

0
26n6A2

n| cos(2nθ)|2dθ = 16π
N∑
n=1

n6A2
n.

We denote K = 1
4
√
π

(
∫
|g(3)|2)

1
2 = (

∑∞
n=1 n

6A2
n)

1
2 . In addition, for any k ≥ 2

we have
∞∑

n=M

1

nk
≤

∞∑
n=M

∫ n

n−1

1

x2
dx =

∫ ∞
M−1

1

x2
dx = −1

x

∣∣∣∣∞
M−1

=
1

M − 1
.

Let ϕn = Anr
−2n sin(2nθ) and SN =

∑N
n=1 ϕn. Given N ≥M , r ≥ 1 and

| sin(2nθ)| ≤ 1 yield

|SN − SM | ≤
N∑

n=M

|An| ≤

(
N∑

n=M

n6A2
n

) 1
2
(

N∑
n=M

1

n6

) 1
2

≤ K√
M − 1

.

Hence, SN is a Cauchy sequence for each (r, θ). Therefore, SN converges to
u at each point.

Moreover, for θ = 0 or θ = π
2 , we have SN (r, 0) = SN (0, r) = 0. Hence,

the limits u(r, 0) and u(0, r) are also zero. In addition, u(cos θ, sin θ) = g(θ)
by definition. �

(B) Show that for each fixed (r, θ) ∈ Ω, ∂
∂rSN ,

∂2

∂r2
SN ,

∂2

∂θ2
SN have the limits

∂
∂ru,

∂2

∂r2
u, ∂

2

∂θ2
u, respectively. In particular, ∆u = 0 holds in Ω.
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Proof. As the proof of (A), we can obtain

∣∣ ∂
∂rSN −

∂
∂rSM

∣∣ ≤ N∑
n=M

2n|An| ≤ 2

(
N∑

n=M

n4A2
n

) 1
2
(

N∑
n=M

1

n4

) 1
2

≤ 2K√
M − 1

.

In addition,∣∣∣ ∂2∂r2SN − ∂2

∂r2
SM

∣∣∣ ≤ 4K√
M − 1

,
∣∣∣ ∂2∂θ2SN − ∂2

∂θ2
SM

∣∣∣ ≤ 4K√
M − 1

Hence, ∂
∂rSN ,

∂2

∂r2
SN ,

∂2

∂θ2
SN are Cauchy sequences, and thus have the limits

∂
∂ru,

∂2

∂r2
u, ∂

2

∂θ2
u, respectively.

Next, we observe

∆ϕn =
∂2

∂r2
ϕn +

1

r

∂

∂r
ϕn +

1

r2

∂2

∂θ2
ϕn = 0.

Hence, ∆Sn = 0. Therefore, ∆u = urr + 1
rur + 1

r2
uθθ = 0. �

(C) Show that limr→+∞ r|u(r cos θ, r sin θ)| = 0.

Proof.

r|u| ≤ 1

r

∞∑
n=1

|An|
r2n−2

≤ 1

r

∞∑
n=1

|An| ≤
1

r

( ∞∑
n=1

n6A2
n

) 1
2
(

1 +

∞∑
n=2

1

n6

) 1
2

≤
√

2K

r
.

Hence,

lim sup
r→+∞

r|u(r cos θ, r sin θ)| ≤ lim sup
r→+∞

√
2K

r
= 0,

implies the desired result. �

Problem 5. Ω is a bounded open set in Rn with smooth boundary and
u(x), f(x) are smooth function defined over Ω. Suppose that given a con-
stant p > 0∫

Ω

1

p
|∇u|p(x) + f(x)u(x)dx ≤

∫
Ω

1

p
|∇v|p(x) + f(x)v(x)dx,

holds if v : Ω→ R is a smooth function satisfying u = v on ∂Ω. Then, show
that the following equation holds in Ω

div
(
∇u |∇u|p−2

)
(x) = f(x).
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Proof. Given x0 ∈ Ω, we define a function I : (−δ, δ)→ R by

I(t) =

∫
Ω

1

p

∣∣∇(u(x) + tηε(x− x0))
∣∣p + f(x)(u(x) + tηε(x− x0))dx,

where η is a rotationally symmetric positive mollifier with compact support.
Then, we choose ε small enough so that we have u(x)+tηε(x−x0) = u(x) on
∂Ω. Then, by the given condition, we have I(0) ≤ I(t), and thus I ′(0) = 0.

Since

I ′(t) =

∫
Ω
∇ηε(∇u+ t∇ηε)

∣∣∇u+ t∇ηε
∣∣p−2

+ fηεdx,

we have

I ′(0) =

∫
Ω
∇ηε∇u|∇u|p−2 + fηεdx

=

∫
∂Ω
ηεuν |∇u|p−2dx+

∫
Ω
−ηεdiv(∇u|∇u|p−2) + fηεdx

= −
∫

Ω
ηε

[
div(∇u|∇u|p−2)− f

]
dx.

Now, we claim that ∇u|∇u|p−2) − f = 0 at x0. If not, without loss of
generality we assume ∇u|∇u|p−2)− f > 0 at x0. There exists some small ε
such that div(∇u|∇u|p−2) − f > 0 in Bε(x0). Then, we have contradiction
from

0 = I ′(0) = −
∫

Ω
ηε

[
div(∇u|∇u|p−2)− f

]
dx < 0.

In conclusion, we have div(∇u|∇u|p−2) = f in Ω. Since u, f are smooth in
Ω we have div(∇u|∇u|p−2) = f in Ω. �

Problem 6. Suppose that a smooth function u(x) satisfies ∆u+ nu = 0 in
a bounded open set Ω ⊂ Rn with smooth boundary.

(A) Show that the maximum principle does not hold for the solution u.

Proof. Consider the function u(x1, · · · , xn) =
∏n
i=1 sinxi on the domain

Ω = (0, π)n. You can check directly that ∂2

∂x2i
u = −u and thus ∆u+ nu = 0.

On the other hand, u vanishes on the boundary of Ω and it is positive in
the interior, so it does not obey the maximum principle. �

(B) Suppose that there exists a positive smooth function w satisfying ∆w+
nw = 0 in Ω. Prove that

max
Ω

u
w ≤ max

∂Ω

u
w .
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Proof. Since w is positive, we can define v = u/w. Then,

∆v = ∆
( u
w

)
= div

(
∇u
w

)
− div

( u
w2
∇w
)

=
∆u

w
− 2

w2
∇w · ∇u− u

w2
∆w + 2

u

w3
‖∇w‖2.

Applying ∆u = −nu and ∆w = −nw yields

∆v = −nu
w
− 2

w2
∇w · ∇u+

nu

w
+ 2

u

w3
‖∇w‖2

= −2∇
( u
w

)
· ∇w
w

= −2∇v · ∇ logw.

Namely,

∆v + 2∇v · ∇ logw = 0.

Thus, by the maximum principle v attains its maximum on the boundary.
�

Problem 7. We define a smooth function Γ : R2 \ {0} → R by

Γ(x) =
x1

‖x‖2
.

(A) Show that Γ is harmonic in R2 \ {0}.

Proof. We recall the fundamental solution Φ(x) = log ‖x‖, which satisfies
∆Φ(x) = 0. Since Γ = − ∂

∂x1
Φ(x), we have

0 = − ∂

∂x1
∆Φ(x) = ∆(−∂x1Φ(x)) = ∆Γ(x).

We can also calculate directly to obtain

∂2

∂x2
1

Γ =
∂

∂x1

(
1

‖x‖2
− 2x2

1

‖x‖4

)
= − 2x1

‖x‖4
− 4x1

‖x‖4
+

8x3
1

‖x‖6
,

and
∂2

∂x2
2

Γ =
∂

∂x2

(
−2x1x2

‖x‖4

)
= − 2x1

‖x‖4
+

8x1x
2
2

‖x‖6
.

Hence,

∆Γ = − 8x1

‖x‖4
+

8x1(x2
1 + x2

2)

‖x‖6
= − 8x1

‖x‖4
+

8x1

‖x‖4
= 0.

�
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(B) Given a smooth function f(x), the following holds

lim
r→0+

1

r2

∫
Br(0)\{0}

f(x)Γ(x)dx = 1
2πf1(0),

where f1(x) = ∂
∂x1

f(x).

Proof. We define B0
r = Br(0) \ {0}, B+

r = {(x1, x2) ∈ Br(0) : x1 > 0}, and
B−r = {(x1, x2) ∈ Br(0) : x1 < 0}. Then, we have∫

B0
r

f(x)Γ(x)dx =

∫
B+
r

f(x)Γ(x)dx+

∫
B−
r

f(x)Γ(x)dx

=

∫
B+
r

f(x1, x2)Γ(x1, x2) + f(−x1, x2)Γ(−x1, x2)dx

=

∫
B+
r

[f(x1, x2)− f(−x1, x2)] Γ(x)dx.

By the Taylor’s theorem, we have

|f(x)− f(0)− x · ∇f(0)| ≤M‖x‖2

for x ∈ B1(0) where M is some constant depending on supB1
‖∇2f‖. Hence,

|f(x1, x2)− f(0)− x1f1(0)− x2f(0)| ≤M‖x‖2,
|f(−x1, x2)− f(0) + x1f1(0)− x2f(0)| ≤M‖x‖2.

Combining them yields

|f(x1, x2)− f(−x1, x2)− 2x1f1(0)| ≤ 2M‖x‖2.
Hence,∣∣∣∣∫

B+
r

(f(x1, x2)− f(−x1, x2)− 2x1f1(0))Γ(x)dx

∣∣∣∣
≤
∫
B+
r (0)

2Mx1dx = 2M

∫ r

0

∫ π

0
r̂2(cos θ)2dθdr̂ = 1

3Mπr̂3

∣∣∣∣r
0

= 1
3Mπr3.

On the other hand∫
B+
r (0)

2x1f1(0)Γ(x)dx = 2f1(0)

∫
B+
r (0)

x2
1‖x‖−2dx

= 2f1(0)

∫ r

0

∫ π

0
(cos θ)2r̂dθdr̂ = π

2 f1(0)r2.

Therefore,

1

r2

∣∣∣∣∣
∫
B0
r

f(x)Γ(x)dx− π
2 f1(0)r2

∣∣∣∣∣ ≤ 1
3Mπr.

Passing r to 0 yields the desired result. �


